
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Neural Network Driven Particle-based
Fluid Simulation

Robert Brand

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Neural Network Driven Particle-based
Fluid Simulation

Partikelbasierte Fluid-Simulation mit
Neuronalen Netzwerken

Author: Robert Brand
Supervisor: Prof. Dr. Nils Thuerey
Advisor: Kiwon Um, Ph. D.
Submission Date: 15.03.2017

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.03.2017 Robert Brand

Acknowledgments

I would like to thank Prof. Dr. Nils Thuerey for providing me with the opportunity
to work on this interesting topic. Secondly and especially, I want to thank Kiwon Um
for putting up with my endless questions, for the weekly meetings and sometimes
overlong discussions.

Also a big thanks to friends and family for supporting me during the process of
creating this thesis and for providing me with feedback on ideas and drafts.

Abstract

Particle-based fluid simulations are often limited by their need for per-particle neighbor
calculation. Inspired by other data-driven approaches we investigate the use of neural
networks to predict the pressure forces within a fluid while avoiding neighborhood
calculation. We present an approach that uses a grid to distribute the particle’s quanti-
ties over space instead. Experiments show that the method can be used to believably
simulate a fluid, although artifacts remain. We discuss the residual errors the approach
contains and its performance compared to WCSPH. In conclusion our method proves
to not be optimal in its current implementation, due to not resulting in a performance
benefit. However, the method contains a lot of potential for performance improvement
which might lead to it performing better than WCSPH. We therefore suggest ways this
could be done as well as an alternative way of modeling the learning which predicts
the entire pressure force field at once instead of each grid cell’s force in isolation. The
approach presented in this thesis can thus be used as a basis for further research into
speeding up particle-based fluid simulations using neural networks.

Keywords: SPH, Fluid Simulation, Neural Networks, Particle-based

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Related Work 2
2.1 Data-driven Fluid Simulation Using Regression Forests 2
2.2 Neural Networks for Accelerating Eulerian Fluid Simulation 3

3 Algorithms 4
3.1 Weakly Compressible Smoothed Particle Hydrodynamics 4
3.2 Neural Networks . 7

4 Approach 9
4.1 Input Features and Ground Truth . 10

4.1.1 Density Grid . 10
4.1.2 Pseudo Pressure . 12
4.1.3 Obstacle Flags . 13
4.1.4 Interpolated Pressure Forces . 14

4.2 Neural Network Structure . 15
4.2.1 Cost Function . 15
4.2.2 Activation Function . 16
4.2.3 Optimizer . 17

4.3 Training . 17
4.3.1 Dataset . 17
4.3.2 Weight and Bias Initialization . 18

4.4 Simulation using Trained Network . 18
4.4.1 Corrective Measures . 19

v

Contents

5 Experiments 21
5.1 Randomized Input Data . 22
5.2 Rotated Input Data and Gravity Multiplier 24
5.3 Training with Actual Pressure . 28
5.4 Other experiments . 31
5.5 Used Libraries . 32

5.5.1 Mantaflow . 32
5.5.2 TensorFlow . 33
5.5.3 Other Libraries . 33

6 Discussion 34
6.1 Correctness . 34
6.2 Performance . 36

7 Conclusions 39
7.1 Prediction per grid cell . 39
7.2 Higher pressures in training simulations 39
7.3 Calculating expressive yet inexpensive input features 40

8 Future Work 41
8.1 Improving the approach . 41
8.2 Predicting all forces at once . 42
8.3 Concluding remarks . 42

List of Figures 43

Bibliography 45

vi

1 Introduction

The Smoothed Particle Hydrodynamics approach is a widely used method to simulate
the movement of a fluid by discretizing its mass to a quantity of particles. To compute
their movement, it is necessary to look at their positions, velocities, densities and
other quantities relative to each other. The computational complexity would therefore
in theory be quadratic with the number of particles. In practice, methods such as
acceleration grids are used to improve this, yet it is always necessary to calculate a list
of the neighbors of each particle. Large amounts of particles can thus not be simulated
in real-time without extremely capable hardware, compromising the simulation quality
in applications such as interactive medical simulations, video games or even film
production, where preliminary simulations should not take too long to render.
Since physical correctness is often less important than overall visual believability and
evaluation speed, methods could be explored that approximately predict the forces
acting on a particle from data about its surroundings. Neural networks lend themselves
well to this notion, as they can be used to approximate any function, given that there is
a relation between the input data and the expected output values. A trained neural
network can also be quickly evaluated on a Graphics Processing Unit (GPU), as it
consists primarily of matrix multiplications, especially in the case of a simple fully-
connected architecture.
This thesis aims to use a simple neural network to predict the pressure forces acting
on each particle without explicitly calculating its neighbours. We present a grid-based
approach as a substitute in chapter 4 which interpolates the particle’s quantities to
a grid, uses a neural network to predict each cell’s pressure force and interpolates
them back to the particles. The experiments in chapter 5 show that the method can
be used to simulate a fluid in different scenarios, albeit with remaining artifacts and
errors. We discuss the performance and residual flaws of our method. Though the
approach does not result in the desired performance improvement, this is mainly down
to implementation details and we show various ways this may be improved. In the end,
we think an approach that predicts the entire pressure force field at once would be a
promising direction to further improve the method described in this thesis.

1

2 Related Work

At the time of writing the published research record on the combination of machine
learning and fluid simulation in computer graphics is sparce. In this section we
highlight two earlier publications in particular that have a strong relation to this thesis.

2.1 Data-driven Fluid Simulation Using Regression Forests

In their 2015 paper, Ladicky et al. proposed a data-driven approach to particle-based
fluid simulation [Lad+15]. They formulated the simulation as a regression problem,
training a regression forest to predict the acceleration of each particle. For this, they
designed an input feature vector based on so-called integral volumes. These essentially
calculate features such as density cumulatively for a discretized space, i.e. grid. This
means that at each grid cell, the integral volume of such a feature is based on the
combined area of the cells to its bottom left. This can then be used to compute the
feature of any box within the grid in constant time. The feature vector of each particle
is comprised of the integral features calculated on a large fixed randomly sampled set
of boxes placed relatively to the particle. From it, the trained regression forest can then
predict the particle’s acceleration.

In many ways, our approach is similar to and inspired by this work. Both meth-
ods avoid explicit calculation of nearest neighbors by making use of a grid. Particle
properties are interpolated to the grid, the prediction is performed using them and the
result interpolated back to the particles (see [Lad+15] and chapter 4). Ladicky et al.
even note that their trained regressor has problems predicting a perfectly still fluid,
similarly to our findings in chapter 5.
The most significant difference is the choice of machine learning approach. We used a
neural network instead of a regression forest with the intention of investigating how
neural networks might be used for such a task. One noteworthy difference between
neural networks and regression forests is that the latter are make their prediction based
on the most discriminative feature, while neural networks factor all input features into

2

2 Related Work

their prediction.
Additionally, though we experimented with a version of integral features our grid-based
approach did not incorporate them in the end. The input features we used are therefore
not evaluated on a set of regions around a grid cell but only on its immediate neighbor
cells. Lastly, our approach differs in scope with respect to the training. While Ladicky et
al. trained on a cluster of ten computers for more than four days, using more than 600
billion samples to do so, our training was performed on a single computer and rarely
took longer than two hours. This was done to enable quick testing of our approach and
iterate on it.

2.2 Neural Networks for Accelerating Eulerian Fluid
Simulation

Tompson et al. investigated the use of neural networks for fluid simulation by taking
a Eulerian, i.e. not particle but fully grid-based approach [Tom+16]. They managed
to train a convolutional neural network (see [Nie17]) to replace the computationally
expensive step of solving the Poisson equation to enforce the incompressibility con-
straint of the fluid. The trained network predicts the whole pressure field each time
step. The pressure field’s gradient is then used to predict the velocity field and thereby
the movement of the fluid. Tompson et al. present results which show their method to
significantly improve the performance of this step of the Eulerian fluid simulation.
Though also using neural networks to predict the pressure and model the incompress-
ibility of a fluid, the approach is less similar to this thesis than that of Ladicky et
al. [Lad+15]. Apart from being a Eulerian method and therefore not requiring the
back-and-forth interpolation between particles and grid, Tompson et al. do not predict
the value of each grid cell individually but the whole pressure field at once. This
allows them to incorporate not only the difference of predicted and expected pressure
into their cost function but also the divergence of the velocity field resulting from the
predicted pressures. The approach therefore has the advantage of predicting overall
more coherent fluid movement compared to the method discussed in this thesis, which
only uses the immediate surroundings of each grid cell to make predictions.

3

3 Algorithms

This section describes the main algorithms used in this thesis. As a fluid simulation
method, we chose Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH).
This method is fairly simple and predicts forces for each particle based on the current
state of all particles without iterative solving. It therefore proved to be a good starting
point for attempting to predict the forces within a fluid using a neural network.
We opted to use a neural network as our machine learning method since they are
theoretically able to learn any possible function [Nie17] and to investigate their viability
for particle-based fluid simulation.

3.1 Weakly Compressible Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) is a Lagrangian, i.e. particle-based, method
of fluid simulation. The fluid is approximated by a set of particles which move with
it, providing the advantage of implicit mass conservation. Each particle distributes
its physical properties, e.g. its mass, over a spherical space of a fixed radius h (see
Figure 3.1). This can then be used to interpolate a continuous property A(x) of the
fluid at a position x [BT07]. This interpolation is performed as:

A(x) = ∑
j
(mj ·

Aj

ρj
W(x− xj, h))

To calculate the value at a position x, the contributions of the particles within the radius
h of that position are summed up. Each contribution depends on the mass mj, density
ρj and quantity to be interpolated Aj of the particle j. Additionally it is weighted by the
value of the so called smoothing kernel function W given the distance of the particle
from the position x. The smoothing kernel thus essentially determines how a particle
distributes its quantities over space. While in Figure 3.1 a linear radial gradient is used
to visualize this, we used a cubic spline as depicted in Figure 3.2 in this thesis.
Using the SPH interpolation described, forces can be calculated that move the particles

4

3 Algorithms

h

Figure 3.1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

Figure 3.2: The smoothing kernel function W used for this thesis. The horizontal axis
represents the distance fed into the function, the vertical axis the resulting
kernel value. The function is a cubic spline depending on the support radius
chosen, here 2.

as the fluid would. The three most important forces are viscosity, surface tension and
pressure force. In this thesis, we will focus on the pressure forces, as they are what
keeps the fluid from compressing and they are arguably the most important forces

5

3 Algorithms

to make the particles move believably as a fluid. To compute them, the first step is
to interpolate the density at the position of each particle. Since the quantity A to be
interpolated is the density ρ, this shortens the equation to ρ(x) = ∑j(mj ·W(x− xj)).
The resulting density at each particle’s position must then be related to a pressure value
using an equation of state. These pressure values indicate how the density at the point
compares to the rest density of the fluid - in particular if it is too high. This then forms
the basis of calculating the pressure forces which should push particles away from high
pressure positions. Weakly compressible SPH (WCSPH) uses Tait’s equation [BT07] as
equation of state:

P = B · ((ρ

ρ0
)γ − 1)

where γ is chosen to be 7 and B is a fixed pressure (see [BT07]). The resulting pressure P
is therefore dependent on the ratio of the resting density of the fluid ρ0 and interpolated
pressure ρ. Tait’s equation of state results in very weak compressibility since it gives
high pressure values for low density variations. WCSPH does not directly enforce
incompressibility based on these pressure values each simulation time step as other
approaches such as Predictive-Corrective Incompressible SPH (see [SP09]) do. Instead
the state of pressure values is used to directly predict the pressure forces. The equation
for this is [BT07]:

f press
i = −∑

j
(mi ·mj · (

pi

ρ2
i
+

pj

ρ2
j
)∇W(xi − xj))

Here the pressure force f press
i acting on the ith particle is calculated using its mass

mi, position xi, density ρi and pressure pi as well as those of the particles j in its
neighborhood. The gradient of the smoothing kernel ∇W essentially provides a scaled
vector connecting particles i and j [Mon05]. Once these pressure forces have been
calculated for all particles, the particles are then advected using euler integration. This
then leads to a new state of particles in the next time step, meaning the densities,
pressures and pressure forces have to be calculated again.
The neighborhoods for each particle must also be calculated at each time step. Without
them, the WCSPH algorithm would have to consider all particles when interpolating
density or pressure force, even if they are further away than the kernel W’s radius
and therefore have no influence. This would result in an n2 complexity of the method,
where n is the number of particles. The neighbor data calculation is realized using a
grid storing references to all particles in each cell. This can then be used to compute
a list of neighbors for each particle where only particles in cells close to the current

6

3 Algorithms

particle have to be considered as potential neighbors.
Though the neighborhood calculation speeds up the WCSPH approach overall, it is
itself the most computationally expensive operation. Our approach therefore seeks to
avoid explicit per-particle neighbor calculation and instead use a neural network to
predict the pressure forces from input data that is less expensive to compute.

3.2 Neural Networks

A program usually specifies steps on how to compute a desired output from given input
values. The programmer explicitly tells the computer what to do. Neural networks
take a different approach to this. Instead of writing down an exact computation, the
network is fed example data consisting of input values and the corresponding desired
outputs. The network gradually infers the underlying rules through training with this
data. In the best case, it can then generalize to data not contained in the example set.
Like this, a neural network can theoretically learn any mapping of values. Images of
handwritten numbers can be mapped to their numerical representation, mathematical
mappings such as x → sin(x) can be approximated.
A neural network is made up of nodes called neurons. They take their inputs x and
compute their output as σ(w · x + b) [Nie17]. The weights for each input w and bias
b are variables that are usually randomly initialized, then gradually adjusted during
training. Their values are what a network actually learns. The activation function
σ finally calculates an activity for the neuron, usually a value in [0, 1] or [−1, 1]. If
chosen to be smooth, the activation function ensures that a small change of weights
and bias will result in a small change of activation [Nie17]. This is crucial for successful
learning. When changing w and b to better fit a new piece of training data, the neurons
overall output and behavior should not change drastically since it should still perform
similarly on previous data samples.
Connecting these neurons via their inputs and outputs forms the actual network. In the
standard feedforward structure (Figure 3.3), they are arranged in layers. The input and
output layer are used to feed data into the network and receive its prediction for it. The
actual computation is performed by the neurons in the hidden layers. If fully-connected,
each receives the outputs of all the neurons in the previous layer, which could be the
input layer or another hidden layer, as its inputs. The network can be evaluated by
successively computing σ(X×W + B) for each layer, where σ is applied element-wise
and X, W, B are matrices containing inputs, weights and biases of the layer.

7

3 Algorithms

input layer hidden layer output layer

Figure 3.3: Fully-connected feedforward neural network structure

Evaluating a network yields a prediction for the output. In order to learn, it is necessary
to specify how the prediction compares to the expected output, also referred to as the
ground truth. For this purpose, a cost or loss function must be defined. The weights
and biases can then be adjusted to minimize the cost function, making the network
approximate the ground truth more closely.
The gradient of the cost function is used to determine how exactly they should be
changed. Since it consists of partial derivatives ∂C

∂w , it gives insight into how changing a
weight w (or bias) would impact the cost function C. To compute the gradient quickly
and with sufficient accuracy, the backpropagation algorithm is used. Its application to
learning is what enabled neural networks to be used in the capacity they are today.

8

4 Approach

The goal of this thesis is to train a neural network using the data from several pre-
computed WCSPH simulations. The trained neural network should then replace the
actual computation of pressure forces in a separate fluid simulation. There are therefore
three distinct tasks that should be solved: Generating the training data, training the
network and applying the trained model to a simulation (see Figure 4.1).

Data Generation

Training

Model Simulation

Trained Neural NetworkSimulation Dataset

saves input features
and ground truth

input features
predicted

pressure forces

loads and trains with trains and saves

Figure 4.1: Interaction between the main components

The Data generation component runs an example WCSPH simulation. For each frame,
it calculates the input features and corresponding ground truth values that the neural
network should be trained with. It then saves this data to disk. This can be repeated
multiple times with different example simulations to yield the full simulation dataset.
This data is loaded in training, preprocessed (see subsection 4.3.1) and used to train
the network model. The trained model is saved to disk. Finally the model simulation
loads and uses it to predict the pressure forces acting on the fluid particles. To do so,

9

4 Approach

input features are calculated at each time step, fed into the network and the resulting
predicted forces used to advect the particles.

4.1 Input Features and Ground Truth

In WCSPH, in order to compute the pressure force acting on each particle, information
about the distribution of fluid mass in the area surrounding the particle is required. The
density value of each particle describes how much of the fluid’s mass is concentrated
at that particle’s position. Applying the equation of state yields the particle’s pressure
value. It indicates how much higher the density is than it should be for the fluid to be
uncompressed. Due to its list of neighbors, each particle thus has information about
where the fluid is being compressed in its vicinity. The pressure force can then be
calculated so that it moves the particle away from those high pressure positions.
For the neural network to learn and predict the pressure forces, it needs similar infor-
mation as input features. To meet our goal, this has to be achieved without explicitly
calculating a list of neighbors for each particle.

The proposed approach calculates input features and ground truth on a grid instead of
per particle. On a grid it is much easier to check the neighbor values, as one simply
needs to look at the surrounding grid cells - no explicit neighbor calculation is required.
The predicted pressure forces for each grid cell can then be interpolated back to the
particles (see section 4.4) to obtain forces that affect the movement of each particle. The
input feature vector of a cell consists of the pseudo pressure values and flag values of
itself and the surrounding eight cells, making for eighteen values in total. The following
sections describe how the pseudo pressure grid and flag grid are calculated in detail.

4.1.1 Density Grid

To avoid per-particle neighbor data for density computation, we use a grid to distribute
the mass of the particles over the simulation space.
Each grid cell’s density value ρi is calculated as:

ρi = ∑
j
(m0 ·W(||xi − xj||))

The sum iterates over all the particles j that are within a radius around the grid cell’s
midpoint xi. For this, the same radius is used as when computing density normally.

10

4 Approach

For each particle j, the distance from the cell center xi is fed into the kernel function W
which returns a corresponding weight in [0, 1]. The particle mass m0, which is in our
case the same for all particles, is multiplied by this weight and added to the grid cell’s
density value. Each particle therefore contributes to the cell’s density proportionally to
its distance from the cell center.

Figure 4.2: Method 1 (left): Distribution, Method 2 (right): Gathering

The two alternative methods of calculating the density value for each grid cell are
shown in Figure 4.2. The distribution method iterates over all particles, adding their
contributions to the surrounding cells’ density values. In contrast method 2 iterates
over all grid cells, gathering the particles from the surrounding cells and adding up
their contributions. Both methods require the same number of computations, since
they consider the same pairs of cells and particles. As can be seen from method 1, this
number is n · c, where n is the number of particles and c a small fixed number of grid
cells, depending on the chosen radius. It is not dependant on the state of the particles,
i.e. it does not change even if the particles are all very close to each other. By contrast,
the normal WCSPH density calculation would have to perform n2 operations in the
worst case scenario, where all particles are within each other’s radius.
Although we used method 1 since it is more intuitive, method 2 has the advantage
of being more easily parallelizable. Method 1 has the issue of race conditions where
multiple particles try to write their mass contribution to a cell’s density value at the
same time. By contrast, the gathering method operates per cell and only has to read
the particle’s contribution values, hence avoiding race conditions.

11

4 Approach

4.1.2 Pseudo Pressure

Normally the pressure is calculated directly from each density value. The density grid
however cannot directly be used to compute a pressure value by simply applying the
equation of state to each cell’s value. This is because a cell’s density value models
the concentration of particle mass at its midpoint (see subsection 4.1.1). Calculating a
pressure from it would only indicate whether too many particles are close to the center,
rather than close to each other. In the example in Figure 4.3 a high pressure value

Figure 4.3: A pressure grid calculated directly from the density grid. Lighter colors for
cells indicate higher values. Fluid particles are represented as green dots.

is falsely calculated for the middle grid cell. Three particles are relatively close to its
center, thereby increasing the cell’s density value. However, the particles are not too
close to each other. As such, there should be no or little pressure.
To avoid this issue, we calculate the pressures at the actual particle positions. The
densities at these positions are obtained by bilinear interpolation of the density grid.
Applying the equation of state then yields a pseudo pressure value at each particle
position:

pj = p0 · ((
ρj

ρ0
)γ − 1)

12

4 Approach

ρj is the interpolated density at the position of particle j. The resting pressure p0, expo-
nent γ and resting density ρ0 are the same as in normal WCSPH pressure computation.
If ρj

ρ0
is smaller than one, the equation results in a negative pressure. This does not make

physical sense, since there are no negative pressures. The value is therefore clamped at
zero.
The pseudo pressure values at the particle positions need to be interpolated back to a
grid. We do this in the same manner in which the particle’s masses were interpolated
to the density grid in subsection 4.1.1. Once this is done for all particles, the resulting
pseudo pressure grid provides the first nine input features of each cell.

4.1.3 Obstacle Flags

In addition to the pseudo pressure values of the surrounding cells, the input feature
vector of each grid cell should also contain information about obstacles in the vicinity.
This helps to prevent the network from predicting pressure forces that would push the
particles into an obstacle. This might otherwise occur in a situation such as in Figure 4.4.

Figure 4.4: Fluid particles (white) congregating near an obstacle (black).

As fluid particles are pushed against an obstacle, the pseudo pressure of the cell may

13

4 Approach

become higher than that of the obstacle cells next to it. Without the information that
these cells are part of a boundary, the network might predict a pressure force pushing
the particles towards the boundary cells as their pseudo pressures are lower.
We therefore include a flag value of each surrounding cell in the input feature vector.
This flag value is zero if the cell is an obstacle and one if not. The flag values make up
the last nine values of a cell’s feature vector.

4.1.4 Interpolated Pressure Forces

To predict with the trained network, the input feature vector of each cell is sufficient.
But for training, we also need to calculate a ground truth value to calculate the cost
function. In our case, the ground truth is the pressure force. This means a pressure
force vector must be calculated for each grid cell. This only has to be done during data
generation. It is thus not necessary to avoid neighbor computation here. The pressure
forces can simply be calculated using the normal WCSPH method for each particle,
then interpolated to a grid.

cell(x+1, y)cell(x, y)

cell(x, y + 1) cell(x + 1, y + 1)

A

B C

D

Figure 4.5: Bilinear interpolation is used to map the per-particle pseudo pressures to a
grid.

To do so, we use bilinear interpolation, though in reverse. The weight of each cell corre-

14

4 Approach

sponds to the area opposite to it (see Figure 4.5). The particle’s pressure force is then
multiplied by the cell’s weight and added to the cell. For instance, in Figure 4.5 the par-
ticle’s pressure force would be multiplied by the area A, then added to cell (x + 1, y + 1).

4.2 Neural Network Structure

The neural network we use has a fully-connected feedforward structure (see section 3.2).
It consists of three hidden layers that contain twenty neurons each. This choice is a
trade-off between depth and training speed. A greater quantity of hidden layers can
enable the network to learn the solution to more abstract problems more easily. To train
a deeper network, however, much more training time is needed.
We also confirmed the network to be able to learn different simple functions such
as f (x) = sin(5 · x) and lower order polynomials before attempting to train it with
simulation data.

4.2.1 Cost Function

The cost function should model how far off the network’s prediction is from the
expected result, the ground truth. For our network, the ground truth y and prediction
yp are three-dimensional vectors. To compare them, it is intuitive to use the euclidean
distance ||y− yp||. It is not necessary to calculate the actual distance, however, since
the most important thing is for the value of the cost function to decrease noticeably

the closer yp is to y. We therefore use C0 =
(y1−yp1)

2+(y2−yp2)
2+(y3−yp3)

2

2 as our base cost
function, omitting the costly computation of the square root.
We further augment the cost function using L2 regularization. This essentially makes
the network "prefer to learn smaller weights" [Nie17]. The network will thus be less
prone to changing the learned prediction due to single data points and instead learn a
function that primarily fits data often seen during training. L2 regularization can hence
be seen as a resistance to noise in the training dataset. It is added to the cost function as

C = C0 +
λ

2n ∑
w

w2

n is the number of training samples, w represents an arbitrary weight. The factor
λ essentially describes the importance of the small-weight-preference compared to
minimizing the cost function overall.

15

4 Approach

4.2.2 Activation Function

6 4 2 0 2 4 6
1.0

0.5

0.0

0.5

1.0

Figure 4.6: tanh activation (red line) vs. sigmoid activation (dotted green line)

As the activation function for each hidden layer we chose the hyperbolic tangent
tanh(x). It is differentiable at all points, meaning it can be used for gradient based
optimization. Its limits limx→∞ tanh(x) = 1 and limx→−∞ tanh(x) = −1 are well-
defined and different, making the network using it universal for computation [Nie17].
These are properties it shares with the widely used sigmoid activation function. As
Figure 4.6 shows, the sigmoid function maps its input to the interval [0, 1], as opposed
to tanh which maps to [−1, 1]. This means that the output of a neuron using tanh will
be zero-centered, which it would not be using sigmoid. Zero-centered input values for
hidden neurons are desirable since it can mean faster learning convergence [Hay99].
Moreover, the [−1, 1] range is suitable because our network will be used to approximate
a vector which could well have negative components.
Sigmoid and hyperbolic tangent share a drawback, however. Their activation saturates
at their limits, making the gradient correspondingly very small. A gradient close
to zero can lead to the neuron being effectively stuck, leading to problems during
backpropagation [Wei17]. To avoid this, correct weight and bias initialization (see
subsection 4.3.2) as well as input data normalization (see subsection 4.3.1) are needed.

16

4 Approach

4.2.3 Optimizer

We used the Adaptive Moment Estimation (Adam) optimizer to minimize our cost
function. This stochastic gradient descent optimizer uses a form of momentum and
adaptive learning rates. The intuition behind this is to mimic a ball rolling down
hill and the way its momentum carries it in the direction it has built up in, even if it
hits a small bump. In a similar vein, the Adam optimizer builds momentum along
those dimensions of the cost function whose gradients do not change directions too
much. This enables it to "go down hill" i.e. find the minimum faster and with less
oscillation [Rud16].

4.3 Training

Training is performed in epochs. Within an epoch, the whole training dataset is split
evenly into batches of a predetermined batch size. For each of these batches, an
optimizer training step is performed (see subsection 4.2.3). The training therefore
traverses the entire training dataset every epoch. At the end of each epoch, it is shuffled
so that the next epoch will not train with the same batches.

4.3.1 Dataset

Before the data can be used to train the neural network, it has to be pre-processed.
The most important part of this is normalization. The pseudo pressures and pressure
forces are usually very large - far outside the "active range" of the hyperbolic tangent.
This can lead to a very small gradient and therefore extremely sluggish learning (see
subsection 4.2.2). Also, by comparison, the obstacle flag values of the input feature
vector are very small, giving them much less influence. Due to this, the pseudo
pressures and pressure forces should be normalized. This is done by looking at the
values occurring in the dataset, finding an upper bound and dividing all values by it.
Another step to optimize the dataset for fast learning is to remove data which does not
represent relevant information the neural network should learn from. In our case, grid
cells whose feature vector only contains pressure values that are zero can be discarded.
This can be done without a threshold value, as the pseudo pressure computation
already performs clamping.
Once the dataset is loaded it needs to be split into a training and a test set. The training
set contains the data the network will actually be fed during training. The test set is

17

4 Approach

used to check how well the network generalizes to unknown data. This also helps to
recognize if the network is overfitting, essentially learning the training data by heart. If
the cost on the training data decreases while the predictions for the test data do not
improve, it indicates that the network is overfitting.

4.3.2 Weight and Bias Initialization

While biases can be initialized to zero or a small positive value, it is important to
randomly initialize the weights so that neurons on one hidden layer do not behave
the same during training [Ben12]. How exactly this is done can drastically affect the
networks ability to learn, especially in a network with multiple layers. If the weights
are initialized too small, this can lead to the input’s variance diminishing throughout
the layers. For an activation function like the hyperbolic tangent (see Figure 4.6), the
activation is almost linear around zero. If the variance of the input shrinks enough, the
network thus acts as it would with a linear activation function [Jos16], losing its ability
to approximate non-linear functions. If the weights are initialized at high values, this
can lead to the neurons becoming saturated and the gradients becoming close to zero
(see subsection 4.2.2).
To avoid these problems during weight initialization, we use Xavier Glorot and Yoshua
Bengios’s method [GB10]. This method chooses the variance of the random distribution
the weights are drawn from depending on the number of inputs nin and outputs
nout of the neuron. In our case a uniform random distribution U(−r, r) where r =√

6/(nin + nout) is used.

4.4 Simulation using Trained Network

During data generation, the fluid is simulated using WCSPH and the input features
are calculated and saved without having any influence on the particle’s movement.
In the model simulation, this is different. It loads the trained network and uses it
to predict the fluid’s behavior. Each simulation time step the input features for the
grid cells are calculated and fed into the network. Since the network is trained with
normalized ground truth values (see subsection 4.3.1), the network’s estimates need
to be denormalized using the same factor. The resulting predicted pressure forces per
grid cell are then bilinearly interpolated to the particles. Using euler integration these
per-particle forces then change the particles’ velocities and thus movement.

18

4 Approach

4.4.1 Corrective Measures

The neural network can only approximate the pressure forces, with the predictions
always containing a small error. We hence introduce two corrective measures to keep
the predicted simulation stable and believable.

Enforcing Obstacle Collisions

As the predicted forces are never fully accurate, they should not be relied upon to
resolve collisions between the fluid and obstacles. Doing so might result in a portion of
the particles moving into the obstacles. This would then lead to input features that the
neural network would have difficulty predicting from, in turn leading to less accurate
predictions for the forces.
We therefore use a simple version of collision detection and resolve to prevent this. The
method is applied each time step, after the particles’ velocities have been updated but
before their position update. For each particle, it checks whether its updated velocity
would move it into an obstacle cell. If this is the case, the dimensions of the velocity
moving the particle towards the obstacle are set to zero. This allows the particle to
move along the obstacle, but not into it.
This method has several disadvantages. First, it can only deal with obstacles that
can be fully described using the flag grid, as this is used to determine whether the
cell the particle would move to is an obstacle. This means the approach only covers
rectangular, static obstacles. Furthermore, setting the velocity to zero is a very crude
form of collision response, featuring no form of impact or projection of the velocity
onto the normal of the obstacle surface. For our purposes though, it is sufficient, as
it is easy to implement, fast to evaluate and the simulated scenes do not contain any
obstacles the method cannot cope with.

Removing Prediction Bias

For any feature vector containing pseudo pressures that are all zero, the predicted
pressure force should be zero as well, regardless of the flag values. Preliminary tests
of the approach showed that this is in practice not the case. As neural networks only
approximate the solution more and more closely, yet never completely reach it, each
cell has a prediction bias - a small pressure force that is predicted even if all pseudo
pressure features are zero. This prediction bias is particularly large for cells near the
boundaries. This is likely the case due to high pressure forces occurring much more

19

4 Approach

often there. The bias is not only a part of the prediction for zero pseudo pressure
values, but is contained within all predictions. We therefore have the neural network
predict the pressure forces for each cell twice: Once normally and once with all pseudo
pressure values set to zero. We then subtract the second from the first to obtain a
prediction without bias.

20

5 Experiments

This section details the experiments performed to test the approach described in chap-
ter 4. For each experiment a network was trained using the same architecture (see
section 4.2) and hyper parameters for better comparability. We used an initial learning
rate of 0.001, a batch size of 1000 and an L2-regularization factor of 0.001. Training was
performed for 300 epochs. These values were mainly chosen through experimentation.
We trained on a single Central Processing Unit (CPU) only, specifically an Intel Core i7
3770 clocked at 3.40 GHz complemented by 24 Gigabytes of DDR3 RAM.
All simulation data was generated using a 64 by 64 grid and a simulation time step
of 0.001, with one simulation running for 300 frames at a frame rate of 30 frames per
second. The simulation scenes were encased by a boundary for the fluid to be pushed
against.

To determine how well each trained model simulates the fluid in various situations, we
chose three specific setups for the model simulation as shown in Figure 5.1. They test

Figure 5.1: Falling fluid, resting fluid and dam break simulations (from left to right)

whether the trained model can cope with sudden high pressure from falling onto the
ground, low pressure which keeps the fluid from compressing in the resting state and
punctual pressure to the sides due to obstacles.

21

5 Experiments

5.1 Randomized Input Data

The first neural network was trained with randomized simulations of one body of fluid
falling onto the floor. For this, six example simulations were computed during data
generation. The bodies of fluid were centered horizontally and placed 0 to 10 percent
of the simulation space height above the lower boundary. Their height and width were
generated between 15 to 20 and 20 to 30 percent of the domain length respectively.
Each simulation consisted of 300 frames with 642 samples - one per grid cell. After
data pre-processing, this resulted in 941260 samples to be trained with. Training took

0 50 100 150 200 250 300
0.0000150

0.0000155

0.0000160

0.0000165

0.0000170

0.0000175

0.0000180

Figure 5.2: Cost on training (red) and test data (green) while training the first model

29.803 minutes, measured using Python’s process time [Pyt17]. Figure 5.2 shows the
cost on test and training data over the training epochs. The curves were smoothed
using a moving Gaussian algorithm [Har08] to make the result more legible. Apart
from some jitter, the cost seems to converge around the 150 epoch mark, indicating that
the network’s predictions do not improve thereafter.
Applying these predictions to the three test model simulations showed the network to
be able to keep the fluid from compressing too much. While encouraging overall, the
predicted fluid did not behave as desired in two regards in particular. The first was
primarily noticeable in the dam break and resting fluid test cases.
If the fluid was pressed against an obstacle the trained model predicted pressure forces
moving the particles upwards. This can be seen quite clearly at the beginning of
Figure 5.3, where the particles resting against the right wall fly up. It is also visible in
Figure 5.4 where the fluid "flows up" the left wall. The phenomenon can be explained

22

5 Experiments

Figure 5.3: Every 40th frame of the dam test using the first trained model

Figure 5.4: Every 40th frame of the resting fluid test using the first trained model

by the fact that the model was only fed data about bodies of fluid falling onto the floor.
The training data therefore contained a lot of information on pressure forces acting
vertically and very little on horizontal ones. The network could therefore not learn to
adequately react to pressure from the sides, instead predicting mainly vertical pressure
forces for higher pressure input.

23

5 Experiments

Figure 5.5: Every 20th frame of the falling fluid test using the first trained model

The second visual inconsistency was the strength of the pressure forces predicted for
high pressure input. In the falling test simulation the fluid bursts apart upon hitting
the bottom boundary (see Figure 5.5, frames 4-6). A possible explanation for this is that
the trained model could not keep the fluid from compressing entirely. In the following
frames, this then lead to input features containing higher pressures than the network
was trained with. The model then predicted very high pressure forces from them due
to imperfect generalization.

5.2 Rotated Input Data and Gravity Multiplier

Due to the observations made in section 5.1, we modified the training data for the
second neural network in two main ways. First, the network needed to receive more
data enabling it to react to pressures from all sides, rather than just from below. We
therefore used each training simulation four times in the dataset, incrementally rotated
by ninety degrees.
Secondly, more data was required for high pressure cases. In normal simulation
conditions, such high pressures only occur for a short time, as the WCSPH solver
quickly resolves them. This would necessitate a massive number of simulations to get
a lot of data on high pressures, as each simulation would only contain a few frames
where it occurs. We instead chose to use amplified gravity to artificially generate high

24

5 Experiments

pressures throughout a whole simulation. Each training simulation was run with three
different gravity multipliers: 1, 5 and 15.
These measures meant that one scene would be varied in twelve different ways, resulting
in twelve times the amount of training data per example scene. To keep training time
low, we therefore only used one such scene which needed to contain enough variation
in pressure values to be viable. Surprisingly, a setup with a resting fluid showed to
have a good range of pressure values (see Figure 5.6). We used the twelve variations

Figure 5.6: Pseudo pressure values in a resting fluid simulation (lighter values equal
higher pseudo pressure)

of this scene, resulting in 4123891 samples, to train the second network. Due to the
larger amount of data, training took significantly longer than in section 5.1 with 98.169
minutes. The cost developed similarly to the previous training run, though with much
more fluctuation (see Figure 5.7), which could be attributed to the higher variation of
input features. Notably the cost does not go lower than in the previous training. The
costs were made comparable by dividing them by the length of the respective dataset.
Otherwise, the cost for the second training would have been much higher since a larger
dataset would result in a larger prediction vector yp and therefore higher cost (see
subsection 4.2.1).

25

5 Experiments

0 50 100 150 200 250 300
0.0000205

0.0000210

0.0000215

0.0000220

0.0000225

0.0000230

Figure 5.7: Cost on training (red) and test data (green) while training the second model

Although the cost remained at a similar level, the test simulations showed a noticeable
improvement over the previous network. The trained model no longer predicted

Figure 5.8: Every 40th frame of the dam test using the second trained model

upwards pressure forces due to obstacles to the sides (see Figure 5.8, frames 1-5)
and reacted better to high pressures such as when hitting the ground at speed (see
Figure 5.9, frames 4-6). Though the resting fluid simulation also improved, the network
was still unable to fully keep the fluid calm (see Figure 5.10, frame 2). One possible
reason for this is that the training data still lacked variance for low pseudo pressure

26

5 Experiments

Figure 5.9: Every 20th frame of the falling fluid test using the second trained model

Figure 5.10: Every 40th frame of the resting fluid test using the second trained model

values. This means that the input features did not contain enough unique values to
cover the range of ground truth values that should be mapped to. As Figure 5.11 shows,
it is problematic if the training data contains samples where the input features are very
similar or the same, yet there is greater variance in the expected output. This inhibits
the network from learning to predict a nuanced range of values.

27

5 Experiments

x1

x2

f1

f2

f3

f4

f5

f6

Figure 5.11: Mapping of insufficiently variant input features (left) to much more varied
ground truth (right)

5.3 Training with Actual Pressure

To further investigate the variance of low pressure values in the training data, we
created a histogram of the occurring values in the dataset used to train the second
neural network. This is shown on the left in Figure 5.12. We compared this to the actual

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0

5000

10000

15000

20000

25000

30000

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0

5000

10000

15000

20000

25000

30000

Figure 5.12: Histograms of the occurring normalized pseudo (left) and actual pressure
values (right) in the training dataset

28

5 Experiments

pressure values for the same set of simulations, shown on the right. For this we did not
use the pseudo pressure calculation described in subsection 4.1.2. Instead, we calculated
the pressure values per-particle using the WCSPH approach, then interpolated these
pressures to the grid. Though the histograms look very similar overall, there is a distinct
difference in the lower range, specifically between 0.00 and 0.02. The right histogram’s
columns are significantly higher there. This suggests that the actual pressures have
more variance for low values than the pseudo pressures. We therefore trained the third
network with actual pressure values. The same twelve simulations were used as in
section 5.2, with the input feature vector of each sample containing actual instead of
pseudo pressure values. However, since the actual pressure values require neighbor
data calculation, they could not be used to predict during the model simulation. As
such, although we trained with the true pressures values, we used pseudo pressure
values to predict as before.
The actual pressure training data resulted in 4273956 samples after data pre-processing.
This was an increase from the 4123891 samples in section 5.2, even though the example
simulations were exactly the same. This suggests that pseudo pressure samples were
often discarded due to being zero when their actual pressure counterpart was in
[0.0, 0.02]. Training the third neural network took 118.759 minutes. The cost during

0 50 100 150 200 250 300
0.0000066

0.0000068

0.0000070

0.0000072

0.0000074

0.0000076

0.0000078

0.0000080

Figure 5.13: Cost on training (red) and test data (green) while training the third model

training fluctuated even more than in section 5.2, yet was overall lower. It is possible
that here, training for more than 300 epochs might have further improved the network’s
performance. The test model simulations showed mixed results. The resting fluid
simulation improved over the second neural network, yet still could not keep the fluid

29

5 Experiments

fully at rest (see Figure 5.14, frame 3).

Figure 5.14: Every 40th frame of the resting fluid test using the third trained model

The dam break and falling fluid simulations performed slightly worse than using the
second trained model. The simulated fluid seemed less cohesive, with the pressure
forces more likely to push particles apart instead of just keeping them from becoming
too close. This can be seen by comparing the 4th frame of Figure 5.15 and the 5th frame
of Figure 5.16 to their counterparts in Figures 5.8 and 5.9. The reason for this is likely
the disconnect between the actual pressure data used to train and the pseudo pressure
data used to predict. Due to this, even though this approach improved the stability of
the resting simulation, it seems overall unsuited.

30

5 Experiments

Figure 5.15: Every 40th frame of the dam test using the third trained model

Figure 5.16: Every 20th frame of the falling fluid test using the third trained model

5.4 Other experiments

Before implementing and testing the main approach described in this thesis, we tested
several other related approaches. Initially, we intended to have the neural network
learn and predict pressure forces per particle, not per grid cell. To do so, a we sampled
the input feature grids, e.g. the pseudo pressure grid, at nine fixed positions relative to

31

5 Experiments

the particle. This means bilinear interpolation of the grid’s values to these positions.
This did not lead to reasonable results for any input feature grid we tried - not for the
pseudo pressure or density grids as described in subsection 4.1.1 and 4.1.2, nor for a
grid containing the number of particles per cell. The most likely explanation as to why
this worked for per-cell but not for per-particle learning is again related to the variance
of the expected output. Interpolating the particle’s pressure forces to a grid smooths
them. This reduces their variance and allows the neural network to find a much better
mapping.
We attempted to exploit this by training our network per grid cell and then using it to
predict per particle. This produced artifacts near obstacles, however. Due to the flag
input features (see subsection 4.1.3) only being 0 or 1 during training per grid cell, the
network could not generalize to interpolated flag values in between which occurred
when predicting per particle.

5.5 Used Libraries

To implement our approach and perform the experiments, we mainly made use of
two libraries. Mantaflow was used as a fluid solver in data generation and for the
model simulation. For training and everything relating to machine learning we used
TensorFlow.

5.5.1 Mantaflow

Mantaflow is an open-source framework for fluid simulation developed at the TU
Muenchen Games Engineering Group and the ETH Computer Graphics Laboratory
by Tobias Pfaff and Nils Thuerey [TP16]. A variety of fluid solving algorithms are
supported, though we only used the simple WCSPH approach. These algorithms are,
for optimal performance and efficiency, mainly implemented in C++. For this thesis,
several functions had to be added to the Mantaflow source code to compute the input
feature data the neural network should learn from and predict with.
Mantaflow uses Python scripts called ’scene files’ to define an actual simulation and
call the fluid solving functions which provide Python interfaces for this purpose. These
scenes may be 2D or 3D. For simplicity, this thesis sticks to the 2D case, though the
Mantaflow support means it should be possible to adapt the results to 3D as well. The
scene files enable easy customization of the setup of a scene. Variables such as obstacle
placement, amount of fluid particles or strength of external forces may all be changed

32

5 Experiments

without altering the fluid solving algorithms themselves. This was used to generate the
different scene setups for data generation and the model simulation tests.
Mantaflow also provides a GUI which can be used to visualize data being computed
per particle or per grid cell. This was very useful for verifying that the neural network
input feature data was being calculated correctly. It also helped in checking the pressure
forces the trained neural network predicted.

5.5.2 TensorFlow

TensorFlow is an open-source software library [Goo16] which allows the construction
and evaluation of computation graphs. It was originally developed within Google
for machine learning and deep neural networks research. TensorFlow follows a lazy
programming paradigm - it first builds a graph of all the computations and their
relationships and only executes it once a so-called ’Session’ is run.
We used it to describe and build neural networks as graphs, then train them. Functions
for saving and loading the state of such a trained graph are also provided. This enabled
us to train a network once, then load the graph into an arbitrary Mantaflow scene and
use it to replace the pressure force calculation.
The built in Tensorboard functionality also allowed for visualization of the training
process, e.g. by plotting the cost on the test dataset over time.

5.5.3 Other Libraries

Further libraries were used to make data manipulation and representation easier in
Python. NumPy [Num16] was used for easier manipulation of the training and test
datasets and to transfer data between Mantaflow and TensorFlow functions. To better
visualize training, we used Matplotlib [Mat16] in addition to Tensorboard, for example
to plot the histograms and cost curves in this chapter.

33

6 Discussion

The experiments in chapter 5 show that our approach can be used to believably
simulate fluid particles using a neural network without explicitly calculating per-
particle neighborhoods. However, the model simulations still retain some flaws we
were unable to resolve. Since the goal was to build a neural network prediction based
simulation that trades correctness for performance, this would in theory be acceptable.
This chapter therefore discusses the advantages and disadvantages of our approach
regarding correctness of the simulation and performance to establish the overall viability
of our approach.

6.1 Correctness

Due to using a grid instead of exactly calculating neighbor data for each particle, our
approach produces slightly incorrect density values for each grid cell. This can be seen
in the following example.
In Figure 6.1 there are four particles whose density should be calculated using the
approach from subsection 4.1.1. In both setups they are positioned identically relative
to each other, however they are translated with respect to the grid. Since their relative
distances are the same, their density values should also be the same. Calculating the
densities using our approach yields different results however.
We first calculate the density grid using the smoothing kernel W from Figure 3.2.
Using this kernel, all distances greater than 2 can be considered to have no influence.
Thus, there are only a few particle-cell distances that need to be considered here. For
the left setup they are 0, 1 and

√
2 with respective kernel values of W(0) ≈ 0.455,

W(1) ≈ 0.11 and W(
√

2) ≈ 0.025. The distances occurring in the right setup are

less obvious. They are ||
(

0.5
0.5

)
|| =

√
2

2 and ||
(

0.5
1.5

)
|| = ||

(
1.5
0.5

)
|| =

√
10
2 . Their

kernel values are W(
√

2
2) ≈ 0.225 and W(

√
10
2) ≈ 0.01. With these kernel values we can

calculate the density grid in Figure 6.2 - we assume the mass m0 to be 1 for this example.
Following our approach from subsection 4.1.2, we interpolate these grid values back to

34

6 Discussion

1

1

Figure 6.1: Particles translated relatively to the grid

1

1

0.70.70.135 0.135

0.1350.1350.025 0.025

0.1350.1350.025 0.025

0.70.70.135 0.135

0.90.470.02 0.47

0.470.2450.01 0.245

0.020.010.0 0.01

0.470.2450.01 0.245

Figure 6.2: Density grids calculated for the setups from Figure 6.1

the particles using bilinear interpolation. This gives us a particle density of 0.7 for the
left setup, compared to 1

4 · (0.245 + 0.47 + 0.47 + 0.9) = 0.52125 for the right setup. This
example shows that our input features contain an error depending on where, relative
to the grid, compression occurs.

35

6 Discussion

Figure 6.3: Interpolated pressure forces often do not point in opposite directions. Pre-
dicted pressure forces per grid cell are shown on the left, interpolated
per-particle forces on the right.

In addition to this error in the input features, the grid-based approach also results in
an issue when interpolating the predicted pressure forces of each grid cell back to the
particles. As shown in Figure 6.3, multiple particles in a cell receive similar interpolated
pressure forces. This shows that the interpolation approach has trouble pushing
particles apart, i.e. in completely different directions. This error can be minimized by
choosing the grid resolution so that there is one particle per cell on average. Overall,
our method shows some inherent flaws which result from the grid-based replacement
for neighbor-calculation. A method attempting to substitute per-particle neighbor data
using a less computationally expensive alternative will inevitably contain some loss of
accuracy. But the flaws described still mean that our approach is inaccurate not only
due to the neural network’s approximation error.

6.2 Performance

The main goal behind avoiding per-particle neighbor computation was to increase
performance. In theory, our approach should be able to perform better than normal
WCSPH, due to only computing cell-particle pairs as discussed in subsection 4.1.1. This
should lead to a worst case performance linear with the number of particles instead of
squared. In practice, this is not fully the case as the grid must be chosen so that there is
one particle per cell at rest density. During the experiments in chapter 5 we recorded
the model simulations’ performance as detailed in Table 6.1.

36

6 Discussion

WCSPH Model Simulation
Overall: 3.7342 ms Overall: 14.8633 ms
Density: 0.5047 ms Density Grid: 0.5588 ms
Pressure: 0.8880 ms Pseudo Pressure Grid: 1.0118 ms

Feature Vector: 0.3719 ms
Pressure Forces: 0.8666 ms Pressure Force Prediction: 12.7080 ms

Interpolation to Particles: 0.2128 ms
Neighbor Data: 1.4749 ms

Table 6.1: Average time taken per operation each time step, measured using Python’s
process time [Pyt17]. Only operations necessary for pressure force calculation
are listed. The dam break simulation from section 5.2 was used to collect this
data.

Overall, our implementation did not perform better than normal WCSPH, actually
taking longer per time step to compute. As Table 6.1 shows, our approach took 14.8633
ms on average to compute the pressure forces, while WCSPH only required 3.7342
ms. The vast majority of this time was spent on the prediction of the pressure forces,
i.e. the evaluation of the neural network. There are several reasons why this is so
expensive. First, we only evaluated the network on the CPU (see chapter 5). Since
the evaluation of the network mainly consists of multiplications of matrices, a GPU
implementation might significantly speed up this step. Additionally, we let the network
predict the pressure forces for all grid cells. In this specific case, this means 642 network
evaluations each time step. It would be much better to discard "empty" grid cells as we
did during training data pre-processing (see subsection 4.3.1). This would result in a
greatly reduced number of network evaluations per time step.
Apart from the very expensive prediction operation, the most time-consuming op-
erations were the calculation of the density and pseudo pressure grids. Compared
to their WCSPH counterparts, they took slightly longer to compute. However, they
do not require the neighbor data calculation which is the most expensive operation
of WCSPH. As explained in subsection 4.1.1, they substitute it by interpolating the
particle’s properties to the grid. Herein lies a distinct advantage of our approach.
Using the gathering method from Figure 4.2 it is possible to parallelize this process,
further speeding up the density and pseudo pressure grid operations. By contrast, The
neighbor data computation of normal WCSPH is much less easy to parallelize. Here,
each particle has a list of its neighbors and their distances from it. Building these lists

37

6 Discussion

in parallel would result in race conditions as multiple particles attempt to write their
information to the same list.
Lastly, the feature vector calculation of our approach could also be sped up using
parallelization. The interpolation of the predicted pressure forces to the particles was
parallelized in our implementation and, correspondingly, was quite fast. All in all,
though our implementation of the method was not as efficient as hoped, there is a lot
of potential for performance improvement which might lead to it performing better
than normal WCSPH. This is especially relevant when considering that the density grid
and pseudo grid calculations could well reach computation times matching density
and pressure calculation in WCSPH without needing the additional neighbor data
calculation step.

38

7 Conclusions

In this thesis we presented and investigated a particle-based approach to fluid simula-
tion that uses a neural network to predict the pressure forces acting on each particle
and avoids the expensive step of per-particle neighborhood calculation. Experiments
showed that it can be used to believably simulate a fluid in many situations. There are
however scenarios it still cannot deal with, especially those containing very low or very
high pressures. Our approach proved to contain some flaws that impact the correctness
of the simulations in addition to the neural network’s approximation error. It also did
not achieve better performance than normal WCSPH, even though this was primarily
down to implementation and it still contains a lot of potential for improvement in
this regard. Although the approach is therefore not viable in its current form, its
development and examination lead to several findings which will be detailed in this
section.

7.1 Prediction per grid cell

Our method predicts grid-based pressure forces from the grid-based input features. As
explained in section 5.4 it was not possible to directly predict the particles’ pressure
forces, as the input features would contain insufficient variance compared to the
expected output values. Interpolating the particles’ pressure forces to a grid proved
to be an effective way of reducing this variance, allowing the network to learn forces
per grid cell. A possible alternative to this could be simply smoothing the particles’
pressure forces, creating less varied ground truth values per particle.

7.2 Higher pressures in training simulations

As section 5.2 showed, during training it is important for the training simulations to
contain higher pressures than the target simulation would if it was computed using
normal WCSPH. The reason for this is that the neural network’s prediction errors

39

7 Conclusions

can lead to temporarily higher compression of the fluid. If the network was never
confronted with higher pressure values during training, it will be unable to correctly
predict pressure forces based on them. This then leads to a higher prediction error,
which in turn can lead to even higher compression and pressure values - the error
amplifies.

7.3 Calculating expressive yet inexpensive input features

The main problem with a method that attempts to predict pressure forces for each
particle is finding input features that are expressive enough, containing a sufficient
amount of variance compared to the expected output, yet are less expensive than particle
neighborhoods to calculate. This inevitably forces a tradeoff between correctness and
performance: Computing complex input features that the network can learn from is
expensive, easily computed input features tend to not contain enough information and
variance.
A possible way of avoiding this would be to choose a different approach, where the
input features are not based solely on the particle’s immediate surroundings. Ladicky
et al. [Lad+15] do something similar where they place a large set of box-shaped areas
relative to each particle (see section 2.1).

40

8 Future Work

The results of this thesis provide two main avenues for follow-up research. The first
is to further improve upon the approach detailed in this thesis. The other would be
to find an alternative way of modeling the network’s learning, specifically one that
avoids the dilemma of calculating input features that contain enough information
about a particle’s immediate surroundings while simultaneously being inexpensive to
compute (see section 7.3). Which direction is more promising largely depends on the
performance improvements detailed in section 6.2. If implementing them improves our
methods performance beyond that of WCSPH there is merit in further optimizing the
approach - if not, an alternative should be sought.

8.1 Improving the approach

Our method can predict the pressure forces within a fluid without calculating per-
particle neighbors. However, to remain stable, it currently needs artificial viscosity
forces to be calculated. These are at the moment calculated in the normal WCSPH way
(see [BT07]). Like the pressure force calculation this requires considering each particle’s
neighbors, their densities, masses and positions. Unlike pressure force calculation, it
also incorporates the relative velocities of a particle and its neighbors. To transfer vis-
cosity computation to our approach, a third grid would therefore have to be introduced
for velocities, similar to those for density and pseudo pressure described in chapter 4.

An additional measure that should be taken to improve the fidelity of our method’s
predictions is to increase the scale on which training is performed. For our experiments,
we used rotated and pressure multiplied resting simulations, resulting in around four
million samples (see section 5.2). Though they contained surprisingly varied pressures
which were sufficient to get an impression of our method’s prediction capabilities,
examining the histogram in Figure 5.12 shows that there was still comparatively little
data for higher pressure values. Since other approaches such as that of Ladicky et al.
took several days and up to 600 billion samples to train their regressor, it stands to

41

8 Future Work

reason that our approach might also show improved results given more varied data on
this scale.

8.2 Predicting all forces at once

Though there are several ways to improve the method presented in this thesis, our
conclusions in section 7.3 suggest that it could be better to model the input features and
learning differently. Specifically, the input features should not try to replace neighbor
data by only providing information about a particle’s immediate surroundings. Both
Ladicky et al. [Lad+15] and Tompson et al. [Tom+16] incorporate information about a
much larger neighborhood into their regressor’s input features - either by evaluating
the features on box-regions in a large area around the particle or by having the network
predict the entire pressure field at once.
As such, we think an alteration to our method that does not predict each cell’s pressure
force in isolation is promising. The most obvious advantage to predicting the whole
pressure force field at once would be that the resulting velocity field’s divergence could
be factored into the cost function as in [Tom+16]. It is also feasible that the additional
spatial information provided to the neural network would allow it to learn from less
varied input data per grid cell, possibly making it more efficient to calculate. The use
of spatial structure could be further strengthened by utilizing convolutional neural
networks [Nie17].
A possible issue with this approach would be that the trained model, due to predicting
for all grid cells at once, would only be able to be used on a whole grid of fixed size.
This would make the approach less flexible since a new model would have to be trained
for different grid resolutions.

8.3 Concluding remarks

Though the exact method presented in this thesis proved to be less viable in its current
form, it showed that it is possible to use a neural network to avoid the normally required
neighbor data calculation in particle-based fluid simulation. It can thus be used as
as foundation to further investigate the promising notion of using neural networks
to increase the performance of smoothed particle hydrodynamics. Such data-driven
approaches might be the key to achieving high fidelity fluid simulations in real time
applications.

42

List of Figures

3.1 . 5
3.2 The smoothing kernel function W used for this thesis. The horizontal

axis represents the distance fed into the function, the vertical axis the
resulting kernel value. The function is a cubic spline depending on the
support radius chosen, here 2. 5

3.3 Fully-connected feedforward neural network structure 8

4.1 Interaction between the main components 9
4.2 Method 1 (left): Distribution, Method 2 (right): Gathering 11
4.3 A pressure grid calculated directly from the density grid. Lighter colors

for cells indicate higher values. Fluid particles are represented as green
dots. 12

4.4 Fluid particles (white) congregating near an obstacle (black). 13
4.5 Bilinear interpolation is used to map the per-particle pseudo pressures

to a grid. 14
4.6 tanh activation (red line) vs. sigmoid activation (dotted green line) . . . 16

5.1 Falling fluid, resting fluid and dam break simulations (from left to right) 21
5.2 Cost on training (red) and test data (green) while training the first model 22
5.3 Every 40th frame of the dam test using the first trained model 23
5.4 Every 40th frame of the resting fluid test using the first trained model . 23
5.5 Every 20th frame of the falling fluid test using the first trained model . 24
5.6 Pseudo pressure values in a resting fluid simulation (lighter values equal

higher pseudo pressure) . 25
5.7 Cost on training (red) and test data (green) while training the second

model . 26
5.8 Every 40th frame of the dam test using the second trained model 26
5.9 Every 20th frame of the falling fluid test using the second trained model 27
5.10 Every 40th frame of the resting fluid test using the second trained model 27

43

List of Figures

5.11 Mapping of insufficiently variant input features (left) to much more
varied ground truth (right) . 28

5.12 Histograms of the occurring normalized pseudo (left) and actual pressure
values (right) in the training dataset . 28

5.13 Cost on training (red) and test data (green) while training the third model 29
5.14 Every 40th frame of the resting fluid test using the third trained model 30
5.15 Every 40th frame of the dam test using the third trained model 31
5.16 Every 20th frame of the falling fluid test using the third trained model . 31

6.1 Particles translated relatively to the grid 35
6.2 Density grids calculated for the setups from Figure 6.1 35
6.3 Interpolated pressure forces often do not point in opposite directions.

Predicted pressure forces per grid cell are shown on the left, interpolated
per-particle forces on the right. 36

44

Bibliography

[Ben12] Y. Bengio. Practical Recommendations for Gradient-Based Training of Deep Archi-
tectures. 2012.

[BT07] M. Becker and M. Teschner. Weakly compressible SPH for free surface flows.
University of Freiburg, 2007.

[GB10] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. DIRO, Université de Montréal, Montréal, Québec, Canada,
2010.

[Goo16] Google. TensorFlow. http://www.tensorflow.org/. 2016.

[Har08] S. W. Harden. Linear Data Smoothing in Python. http://www.swharden.com/wp/2008-
11-17-linear-data-smoothing-in-python/. 2008.

[Hay99] S. Haykin. Neural Networks - A Comprehensive Foundation. Prentice Hall
International, Inc., 1999.

[Jos16] P. Joshi. Understanding Xavier Initialization In Deep Neural Networks. 2016.

[Lad+15] L. Ladicky et al. Data-driven Fluid Simulations using Regression Forests. ETH
Zurich, 2015.

[Mat16] MatplotlibDevelopmentTeam. Matplotlib. http://matplotlib.org/. 2016.

[Mon05] J. J. Monaghan. Smoothed particle hydrodynamics. School of Mathematical
Sciences, Monash University, Vic 3800, Australia, 2005.

[Nie17] M. Nielsen. Neural Networks and Deep Learning. 2017.

[Num16] NumPyDevelopers. NumPy. http://www.numpy.org/. 2016.

[Pyt17] PythonSoftwareFoundation. Python Documentation. https://docs.python.org/3/library/time.html.
2017.

[Rud16] S. Ruder. An overview of gradient descent optimization algorithms. 2016.

[SP09] B. Solenthaler and R. Pajarola. Predictive-Corrective Incompressible SPH. Uni-
versity of Zuerich, 2009.

45

Bibliography

[Tom+16] J. Tompson et al. Accelerating Eulerian Fluid Simulation With Convolutional
Networks. New York University, 2016.

[TP16] N. Thuerey and T. Pfaff. MantaFlow. http://mantaflow.com. 2016.

[Wei17] X.-S. Wei. Must Know Tips/Tricks in Deep Neural Networks. 2017.

46

	Acknowledgments
	Abstract
	Introduction
	Related Work
	Data-driven Fluid Simulation Using Regression Forests
	Neural Networks for Accelerating Eulerian Fluid Simulation

	Algorithms
	Weakly Compressible Smoothed Particle Hydrodynamics
	Neural Networks

	Approach
	Input Features and Ground Truth
	Density Grid
	Pseudo Pressure
	Obstacle Flags
	Interpolated Pressure Forces

	Neural Network Structure
	Cost Function
	Activation Function
	Optimizer

	Training
	Dataset
	Weight and Bias Initialization

	Simulation using Trained Network
	Corrective Measures

	Experiments
	Randomized Input Data
	Rotated Input Data and Gravity Multiplier
	Training with Actual Pressure
	Other experiments
	Used Libraries
	Mantaflow
	TensorFlow
	Other Libraries

	Discussion
	Correctness
	Performance

	Conclusions
	Prediction per grid cell
	Higher pressures in training simulations
	Calculating expressive yet inexpensive input features

	Future Work
	Improving the approach
	Predicting all forces at once
	Concluding remarks

	List of Figures
	Bibliography

